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Buckling of a Vertically Mounted
Cantilevered Plate Under Static
Torsional Corner Loads—
Experiment and Theory
The results of an experimental study on the buckling of a vertically cantilevered plate under
corner twisting forces are reported. In this configuration, an interesting and somewhat
counter-intuitive behavior is observed in which a laterally loaded slender panel exhibits
a subtle instability characterized by nonlinear out-of-plane corner deflections. This is one
of the few studies in the literature that investigates the buckling of cantilevered plates and
appears to be the only experimental study of buckling under twisting loads, i.e., loading the
plate with point loads at the free corners and in opposite directions. This paper discusses
the practical aspects of experimental verification and methodology and evaluates the
effect of the plate aspect ratio (AR) on the nondimensional buckling load in this configura-
tion. In addition, experimental results are compared to finite element analysis (FEA) simu-
lations performed on accessible software. There is generally good agreement between the
experiment and the finite element simulation for the change of buckling load with plate
aspect ratio. The nondimensional buckling load appears to decrease asymptotically with
increasing aspect ratio, though the correlation between experiment and computation is
less consistent as aspect ratio increases due to experimental and computational limitations.
[DOI: 10.1115/1.4056859]
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1 Introduction
Buckling is one of the most important physical phenomena in

structural engineering, often providing limiting design constraints,
especially in aerospace applications. Much of the early literature
is well described in the classic text by Timoshenko and Gere [1].
Publications continue to appear with particular emphasis on buck-
ling due to thermal stresses for structures operating at high temper-
atures and on buckling for devices built at the nanoscale. See, for
example, the paper by Lachut and Sader [2] and the literature
cited therein. Note also that the paper by Lachut and Sader is one
of the few that treats a cantilevered plate for the case of in-plane
loads. Even at the nanoscale, continuum theories are often used
and provide physically meaningful results. There is also literature
where buckling is used to provide new and desirable shapes and
beneficial exploitation [3,4], although much of the conventional lit-
erature on buckling is devoted to understanding how buckling may
be prevented.
The present paper investigates a theoretical finding of Pai et al.

[5] and presents a finite element computation comparable to that
done by Pai for correlation with the experimental data. The struc-
tural configuration is a cantilevered plate with corner twisting
loads. The correlation between experiment and theory is generally
good, especially given the physical complexity of the buckling phe-
nomenon. In many classical studies of buckling, e.g., a straight
Euler beam or the generalization to a plate under in-plane compres-
sive loads, the critical load can be found from a linear eigenvalue
analysis, since there is no out-of-plane deformation until buckling
occurs. It has been well established that imperfections due to

deviations from a straight beam or perfectly flat plate may lead to
further complications and must be treated by a nonlinear theory [6].
In the present case, even small lateral loads lead to nonlinear

out-of-plate deflections and buckling can occur when the deforma-
tions are well into the nonlinear range. Because the physical phe-
nomenon is inherently nonlinear, the approach to buckling, the
onset of buckling, and the deformation after (post) buckling are con-
sidered here in both the experiment and the computations. The
application of the loads in opposite directions (causing a twisting
effect) leads to the appearance of in-plane stresses, and these are
the underlying cause of buckling. Finally, it is noted that substantial
literature also exists on snap buckling or dynamic buckling [6–8],
but this aspect of buckling is not pursued in the present study.
The current paper provides both experimental and computational

evidence that a cantilevered plate can buckle under a twisting load.
The previous computations of Pai et al. [5] now well establish this
surprising result by the present experimental and computational
work. The various sections of the paper are Introduction (Sec. 1)
including the Problem Statement (Sec. 1.1) and Motivation (Sec.
1.2); Experimental Methods (Sec. 2) including Experimental
Setup (Sec. 2.1), Experimental Procedure (Sec. 2.2), and Uncer-
tainty and Limitations (Sec. 2.3); Computer Simulation Methods
(Sec. 3) including Simulation Motivation (Sec. 3.1), Simulation
Setup and Method (Sec. 3.2), and Uncertainty and Limitations
(Sec. 3.3); Results (Sec. 4) including Dimensional Load Versus Dis-
placement (Sec. 4.1) and Nondimensional Load Versus Aspect
Ratio (AR) (Sec. 4.2), and finally Conclusions and Possible
Future Work (Sec. 5).

1.1 Problem Statement. A vertically cantilevered rectangular
plate is clamped at one end and subject to normal, opposing point
loads at its two free corners. The corners deflect out-of-plane with
progressive nonlinearity, and upon reaching a critical load, the
plate buckles. There are three distinct equilibrium configurations:
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one pre-buckling where the corners deflect equally in magnitude but
opposite in direction, one where the plate is buckled forward, and
one where the plate is buckled backward. In the ideal case of a
perfect plate subject to identical opposing corner loads and
in-plane gravitational forces, the forward and backward buckling
modes would be expected to have anti-symmetric displacements.
Initially, the plate twists with a small deflection, but then
becomes concave and buckles in one direction upon reaching the
critical load. Buckling direction depends on plate imperfections
and the loading sequence near the buckling point. See Fig. 1 for
computer-simulated states of the plate.

1.2 Motivation. The buckling phenomenon of a cantilevered
plate in this loading case was predicted by Pai et al. with the
finite element analysis (FEA) software ABAQUS [5]. Their formula-
tion was based on a geometrically exact formulation. The present
paper investigates this theoretical finding from an experimental per-
spective and characterizes the force-deflection relations, especially
the nondimensional relationship between buckling load and AR.
Additionally, experimental data will be compared to ANSYS FEA
simulations conducted by the present authors. Predicting the buck-
ling load and deflection of cantilevered plates directly applies to
modeling cantilevered elastic structures, such as aircraft wings.
Data were also obtained for a horizontally cantilevered plate,
where gravity introduces a non-trivial asymmetry to the deflection
and alters the buckling behavior of the plate. The horizontal case
has symmetry-breaking gravitational forces and will be reported
separately.

2 Experimental Methods
2.1 Experimental Setup. Data were collected from three dif-

ferent rectangular 6061 aluminum alloy plates of varying widths
and aspect ratios, where the aspect ratio is equal to plate length
(a) divided by plate width (b). The nominal plate widths are 2, 5,
and 10 in. Note that the actual plate widths are not exactly equal
to the nominal widths. See Table 1 for the exact dimensions of
the three different plates used in this study.
The thickness of each plate was 1/32 in. (0.794 mm), based on

standard stock. Small holes were drilled near the free corners of

each plate with a 1.5 mm drill bit. Lines were then drawn on each
plate with a marker to indicate the lengths corresponding to differ-
ent aspect ratios. The terms “front” and “back” regarding the plate
and testing rig orientations are arbitrary, but it is helpful to make
permanent front and back designations when determining whether
the plates and testing rig have an orientation bias in measuring
deflection. A perfectly flat plate is expected to deflect anti-
symmetrically when the direction of the corner loads is reversed.
The maximum aspect ratio of the plates was limited by either the
plate length or the available length inside the testing rig. See
Fig. 2 for a diagram of the test setup.
The test rig was constructed of 1-in. thick (25.4 mm) 80/20 alu-

minum t-slot extrusions. The members were joined with a combina-
tion of 3D-printed polylactic acid plastic (PLA) and standard metal
t-slot brackets to form a prismatic rig to which a clamp, a ruler, and
two low-friction acetal plastic pulleys were fixed. A test plate can
then be inserted into the clamp, which consists of two 2.5 in.
(63.5 mm) wide 6061 aluminum bars bolted together on either
side of the plate. A C-clamp is additionally placed in the middle
of the bars to apply pressure more evenly to the plate through the
bar clamp. Both the bar clamp and pulleys are adjustable on two
axes and are repositioned before each test to ensure the levelness
of the setup and perpendicularity of the corner loads to the plate.
The maximum plate length inside the extended rig is 35 in.
(889 mm), which sets an upper limit on the testable aspect ratios
unless plates narrower than 2.5 in. (63.5 mm) are used, which is
not recommended due to the disproportionate effect of plate imper-
fections on nonlinear deflections in small plates. Although the test
setup was not bolted to the tabletop, it is believed to be sufficiently
rigid and does not appear to move during testing. Several iterations
of the testing rig can be seen in Fig. 3.

2.2 Experimental Procedure. A plate is first inserted into the
clamp at the selected length. After checking the perpendicularity of
the plate to the bar clamp with a square tool, the bolts are tightened,
and the C-clamp is added. The bar clamp is then leveled on either

Fig. 1 Typical deflected shapes of the panel: plate buckled
forward (left), plate unbuckled (center), and plate buckled back-
ward (right)

Table 1 Experimental plate dimensions

Plate width, b (mm) Plate width, b (in.) Maximum AR, a/b

50.01 1.96875 10
126.21 4.96875 4
254.79 10.03125 2

Fig. 2 Schematic diagram of sample test plate (left); diagram of
ideal test setup with plate, clamp, point forces F, dimensions a
and b, displacement w, and gravity g (right)

Fig. 3 Wooden rig (left), T-slot structure (middle), and extended
T-slot structure (right)
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side to ensure that the plate hangs as vertically as possible. Fishing
line is looped through the corner holes of the plate and placed over
the pulleys, which are finely adjusted so that the string is normal to
the plane of the plate. The pulley, axle, and fishing line are then
sprayed with WD-40 to reduce friction. The initial no-load position
of each plate corner is measured by aligning a 3D-printed plastic
slider on the ruler with each corner and reading off the correspond-
ing measurement. This sets the datum point for each corner from
which displacements are measured. Mass hangers are then tied to
the fishing line.
The manner and order in which mass is added or removed affect

the displacement of the plate. Mass should be added slowly to simu-
late a quasi-static load increase to not perturb the system dynami-
cally. The direction of buckling can be controlled by adding mass
preferentially to that side. Masses are always added first and
removed last from the side intended to buckle. As the system has
some pulley friction, there is a small range of possible equilibrium
displacements for each corner. A dynamic disturbance may cause
the plate corner to come to rest at any one of the positions in this
range, which may vary on the order of a centimeter in the present
configuration. For consistency, the outlined measurement technique
intends to capture the maximum displacement possible on the
buckled side. Preferentially adding load to one side will initially
move the buckled corner beyond its equilibrium displacement
point. When the load is slowly equalized with the addition of
mass on the other side, the buckled corner will return to its
maximum equilibrium displacement. Adding mass suddenly can
result in dynamic transients that could settle onto any available
equilibrium configuration, rather than follow the immediate path.
Two testing procedures were used to obtain plate displacement

data (see Fig. 4). The “single loop” method captures only one set
of data for each position but is faster and can be done without
prior knowledge of the buckling point. The “double loop” method
collects data for each position twice but requires approximate
prior knowledge of the buckling point before testing and is more
time-consuming. These methods are not exhaustive. In the single
loop method, mass is added with loading priority to the front of
the plate up to the maximum load. Then, the plate is intentionally
buckled into the second buckling mode by pulling gently on the
masses on the back side of the plate and finding the extreme displa-
cement position for the anti-symmetric mode. Then, the masses are
gradually unloaded with buckling priority to the back, meaning that
the masses on the front side are always removed first. In the double
loop method, masses are loaded with priority to the front side up to
the maximum load. Then, masses are removed with priority to the
front until a point below the believed buckling load is reached.
Masses are then added with priority to the back of the plate up to

the maximum load, and the plate should buckle into its second con-
figuration. Finally, all masses are removed with priority to the back.
These two loading approaches help identify equilibrium paths and
co-existing responses.

2.3 Uncertainty and Limitations. The friction in the pulleys,
the variation in the angle of the fishing line relative to the plate, and
the variation in the masses contribute to deflection and applied load
uncertainties. In a simple system where fishing string attaches two
masses over a load pulley from the test rig, it was found that the
masses did not accelerate unless the difference in mass between
them exceeded 10 g. This friction in the pulleys results in a mild
spread in the collected displacement data. When the plate is
loaded in the rig and one of the masses is raised and lowered slightly
up or down, the corner displacement will change, but the corner
may not return to its original position (the greater the friction in
the pulley, the greater the range of possible corner displacements
for a given loading configuration). Therefore, a careful method of
slowly adding and removing masses is recommended to capture
only the most extreme corner position within the range of possible
values. Pulley friction can be roughly accounted for by absorbing
the holding force of the pulleys into the corner loads by adding or
subtracting on the order of 10 g to the values of the corner masses.
Ideally, the fishing line is perpendicular to the plane of the plate

such that the force from the hanging mass acts in the normal direc-
tion. However, the angle of the string may be misaligned, and the
range of possible string locations is estimated to be bounded by a
5 deg cone from the normal axis of the plate based on test rig mea-
surements. The actual force perpendicular to the plate is then pro-
portionally reduced by the trigonometric normal component of
the plate.

F⊥ = Fapplied ∗ cos (5 deg) = 0.996 ∗ Fapplied

This results in an estimated maximum 0.4% reduction in the
normal force on the plate from the nominal mass over the pulley
and indicates that a small, in-plane external force on the plate is
present. The mass hangers and mass disks themselves also have var-
iations in their masses. The two 100 g hangers have masses
101.38 g and 100.72 g, which is sufficiently close to 100 g in the
scope of the applied loads (often in the hundreds of grams) to be
considered negligible. The 100 g mass disks weigh an average of
99.77 g with a standard deviation of 0.52 g. A stack of ten disks
has a standard deviation of 1.6 g in a combined distribution,
which is also orders of magnitude less than the applied corner
forces and is also ignored. A 3D-printed plastic slider helps align
the corner of the plate with the correct mark on the ruler, although

Fig. 4 Single loop method (left) and double loop method (right). Arrows indicate the loading direction and dots show repre-
sentative experimental data.
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the guide itself can twist and wobble, adding a measured ±3 mm of
displacement uncertainty.
The greatest source of uncertainty in the experimental system

comes from the inherent nature of the buckling behavior. Directly
after the buckling point (typically within a mass range of 50 g for
the tested plates), the two buckling modes may appear indistin-
guishable. Lower aspect ratio plates tend to deflect less than
higher aspect ratio plates for the same applied load, making buck-
ling difficult to observe without high precision measuring tools.
In high aspect ratio plates, there is more uncertainty after the buck-
ling point as the plate deflection is extremely sensitive to increases
in load and it is difficult to accurately determine the maximum dis-
placement. The buckling mass of each aspect ratio has an uncer-
tainty of approximately ±50 g determined by the increments of
the available masses.
The experimental buckling load is identified as the applied load at

which the difference in displacement measurements for the same
corner first exceeds 6 mm, at which the measurements given the
±3 mm displacement uncertainty are believed to be distinguishable.
This can be found by plotting the range of displacement data against
the applied load and identifying the interpolated load where the
measured displacement crosses 6 mm.

3 Computer Simulation Methods
3.1 Simulation Motivation. While the experimental method

provided measured data on the buckling phenomenon, it is also
clear that the limitations of the setup and the non-perfect nature
of the tested plates impact the ability to generalize the data. For
this reason, it was considered useful to compare experimental
results with a commercially available finite element solver code.
ANSYS WORKBENCH 2021 was selected for these simulations due to
its user interface and licensing accessibility. The goal of these sim-
ulations is to compute both plate displacement data and buckling
points for any given plate dimension or aspect ratio. Note that sim-
ulations were limited only to the nominally 5 in. wide plate
(126.21 mm). This plate generally had the clearest experimental
data over a range of aspect ratios, up to aspect ratio 4. The nomi-
nally 2 in. wide plate deflected too little at low aspect ratios to
have easily distinguishable displacement with the present experi-
mental setup, and the simulation software had difficulties handling
the excessively large displacements characteristic of the higher
aspect ratios. Experimental data from the nominally 10 in. plate
were taken at only a few different aspect ratios due to limitations
in test rig size.

3.2 Simulation Setup and Method. ANSYS WORKBENCH 2021
features both static “structural” and “eigenvalue” buckling capabil-
ities which can simulate both linear and nonlinear displacements.
One documented method of predicting the critical buckling load
involves feeding the results of a static structural simulation for a
plate subject to a pre-buckling load into an eigenvalue buckling
simulation, which will calculate a λ factor that is a load multiplier
for a statically applied force. The predicted buckling load is then
the multiplier times that load. It is convenient in this case to use
an applied load of unity such that the buckling load is simply
equal to λ in the corresponding units. To view the displacement
of the plate post-buckling, the results of the eigenvalue buckling
study are then fed into a second static structural simulation,
where the first mode shape calculated in the eigenvalue buckling
study is multiplied by a scale factor to form an initial, perturbed,
and asymmetric plate geometry. It is unclear how to pick this
scale factor, however a value of 0.0001 was used in a different
study [9]. This simulation method did not produce buckling load
results like the experimental data. Note that the eigenvalue buckling
study is only intended to provide results for a geometrically sym-
metric plate.
Another method was attempted using only a static structural

study. One limitation of the static structural study is the inability

to calculate post-buckling displacements for a symmetric setup.
Thus, adding a small perturbation force was necessary to introduce
an asymmetry into the model. The chosen method for doing so was
by adding a 0.0098 Newton force (corresponding to 0.001 kg-force
or 1 g-force) normal to the plane of the plate exactly at the bottom
edge, effectively pre-bending the plate slightly in the forward direc-
tion. This allowed the static structural simulation to effectively cal-
culate nonlinear post-buckling displacements. The addition of this
perturbation determines the buckling direction of the plate in the
simulation. A perturbation force will result in buckling in the
same direction as the applied pre-loading force.
The material for the simulation was selected as an aluminum

alloy with software-loaded properties that differed slightly from
the 6061 aluminum alloy used in the experiment, although
custom properties can be defined by the user. The difference of
the physical parameters for the experiment and those used in the
finite element computation are small and less than the uncertainty
in determining the buckling loads from the experimental data.
The relevant properties of the experimental and simulated materials
are summarized in Table 2. In future simulations, a custom material
could be created that matches the exact properties of the tested 6061
aluminum alloy. See Refs. [10,11].
The model geometry was imported as a .sldprt file from SOLID-

WORKS and the plate was modeled with the nominal width of 5 in.
(127 mm), not the measured width of 126.21 mm, while the thick-
ness of the plate was modeled as exactly 1/32 in. (0.79375 mm). An
additional 2 in. (50.8 mm) was added to the length of the plate
model to provide the clamping surface. A mesh with an element
size of 5.0 mm was used for all simulations, with all other mesh set-
tings left at their default values. The mesh for each plate appeared
nearly square and uniform, with no apparently skewed elements.
Each simulation was run for one step with either 250 or 500 sub-
steps, depending on the convergence of the solution. The large
deflection setting was also enabled, and all other analysis settings
were left at default. The number of mesh elements and sub-steps
for each simulation are summarized in Table 3.
Each side of the 2 in. (50.8 mm) clamp surface was given a fixed

boundary condition to model the boundary conditions imposed by
the aluminum clamp in the experimental setup. The effect of
gravity was ignored in the simulation as the corner displacements
are only a few centimeters from the vertical plane, and the horizon-
tal component of gravity acting on the plate’s mass is negligible
compared to the imposed forces at the corners. The 0.0098 N per-
turbing force was then added to the bottom edge of the plate
acting in the +Z direction (the plate is oriented vertically in the
XY plane) and was set as a tabular value to remain constant

Table 3 Summary of simulation parameters

Aspect ratio, a/b Mesh elements Sub-steps Applied corner load (N)

1 875 500 20
1.5 1200 250 15
2 1525 250 10
2.5 1850 250 10
3 2150 500 8
3.5 2475 500 7
4 2800 500 6

Table 2 Summary of experimental and simulation material
properties

Property
6061 aluminum alloy
(experiment) [10]

ANSYS aluminum alloy
(simulation) [11]

Density 2700 kg/m3 2770 kg/m3

Young’s modulus 68.9 GPa 71 GPa
Poisson’s ratio 0.33 0.33
Shear modulus 26 GPa 26.692 GPa
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throughout the simulation. Corner forces were added with the fol-
lowing convention: “Force A” acts on the bottom right “forward
corner,” pushing the plate in the −Z direction while “Force B”
acts on the bottom left “backward corner” by pushing the plate in
the −Z direction. These corner forces were of equal magnitude
and opposite direction and were ramped over the selected number
of sub-steps to the maximum corner load given in the table
above. The directional displacement of each corner in the Z axis
was measured with a probe and plotted against the ramping force
in the chart feature, showing resulting displacement versus the
applied load. A plot of total plate deformation with contour lines
indicating deflection was inserted to verify the qualitative displace-
ment and buckling of the plate. See Figs. 5 and 6.

3.3 Uncertainty and Limitations. Two interesting features of
the curves in Fig. 6 are the minimum displacement for corner A
(bottom curve, D) and the knee in the displacement of corner B
(top curve, F), which do not actually occur at the same simulated
load. The load corresponding to the minimum of corner A was
selected as the buckling point for these simulations and it may be
the case that reducing the perturbation force to zero will cause the
difference in simulated load between these two points to approach
zero as well.

4 Results
Note that documentation of raw experimental and simulation data

can be provided in .csv format. Figures 7–13 show measured and

computed displacements versus load for aspect ratios of 1, 1.5, 2,
2.5, 3, 3.5, and 4.

4.1 Dimensional Load Versus Displacement. Clearly, the
agreements between experimental and simulation data for aspect
ratios 2.5 and 3.5 are not as good for the other aspect ratios
(Figs. 10 and 12). There appear to be no physical reasons for this.
A modified setup with laser displacement sensors might improve
this correlation. However, the general trend is the same in both com-
putations and experiments, with generally weaker quantitative
agreement as the aspect ratio increases. This is due to the greater
deflection sensitivity of high aspect ratio plates to applied loads
and is compounded by difficulties associated with precisely measur-
ing the out-of-plane displacements.

4.2 Nondimensional Buckling Load Versus Aspect Ratio.
From Figs. 7–13, the buckling load was estimated and shown in
Table 4 and Fig. 14.
The buckling loads shown in Fig. 14 for both the measured and

computational results are the best estimates identified by the present
authors using the data shown in Figs. 7–13. In Fig. 14, Mg is the
applied tip load, b is the plate width, and D is the plate flexural
rigidity defined by D=Eh3/12(1− v2), where E is Young’s
modulus, h is the plate thickness, and v is Poisson’s ratio. The
uncertainty error bars shown in Fig. 14 for the experimental buck-
ling load reflect the uncertainty in the loads applied to the

Fig. 5 Static structural simulation study (left), application of boundary conditions and forces (center left), typical mesh (center
right), and typical deformation (right)

Fig. 6 Static structural simulation study typical chart output
Fig. 7 Experimental versus simulation displacement for the
5 in. (126.21 mm) plate at AR=1
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Fig. 8 Experimental versus simulation displacement for the
5 in. (126.21 mm) plate at AR=1.5

Fig. 9 Experimental versus simulation displacement for the
5 in. (126.21 mm) plate at AR=2

Fig. 10 Experimental versus simulation displacement for the
5 in. (126.21 mm) plate at AR=2.5

Fig. 11 Experimental versus simulation displacement for the
5 in. (126.21 mm) plate at AR=3

Fig. 12 Experimental versus simulation displacement for the
5 in. (126.21 mm) plate at AR=3.5

Fig. 13 Experimental versus simulation displacement for the
5 in. (126.21 mm) plate at AR=4

061004-6 / Vol. 90, JUNE 2023 Transactions of the ASME



experimental plate; specifically, they are equal to the nondimen-
sional load increment of the available mass disks, corresponding
to a dimensional 50 g-force. However, as is clear by an examina-
tion of Figs. 7–13, there is considerable uncertainty in the judgment
required to estimate the experimental onset of buckling. Inevitably
there is some subjectivity in identifying the buckling load from
both the measured data and the computational data. The reader is
encouraged to use their own judgment in the data of Figs. 7–13
to estimate this greater uncertainty in the buckling loads shown
in Fig. 14.

5 Conclusions and Possible Future Work
The study of buckling of a vertically mounted cantilevered plate

under static torsional loads has led to several interesting results. The
prior theoretical prediction of Pai et al. [5] has been confirmed.
While there is no analytical predictive model for this buckling phe-
nomenon, the experimental results provide physical insight into the
limit cases of the studied configuration. At low aspect ratios, a plate
has vanishing length and loses its ability to twist, resulting in higher
required nondimensional buckling loads. At these aspect ratios,
experimental difficulties include providing sufficiently high
corner loads to observe buckling and measuring small corner deflec-
tions with high precision. For high aspect ratios, a plate becomes
vanishingly narrow, and the twisting moment of applied corner
forces decreases. Slight physical imbalances and disturbances in
the system result in large out-of-plane nonlinear deflections which
become increasingly difficult to measure accurately. This is a note-
worthy example where the loading is not obviously an external
compressive load yet buckling does indeed occur. A recent paper
also considered the appearance of membrane stresses under lateral
loading in-plate using an FEA approach [12]. Moreover, the bifur-
cation that defines the buckling load is about a non-trivial nonlinear
equilibrium state.

A quantitative comparison of experimental results with computa-
tional results using a theoretical finite element model comparable to
that used by Pai et al. has shown a generally good correlation
between theory and experiment. Nevertheless, there is an opportu-
nity for improvement in the measurement and loading systems used
here. Measuring a complete picture of the deflected plate shapes
using digital image correlation would provide further insight into
the transition between pre- and post-buckling states. The systems
used in the present study were chosen for their simplicity, but
more sophisticated measurement and loading devices are certainly
worthy of consideration. A corresponding study (the results are
not presented here) focusing on the plate mounted horizontally
has shown that the effect of gravity is to break the symmetry of
the response. In many ways, gravity loads for the cantilevered
plate act as the analog of geometric imperfection.
Finally, although this paper focuses on static buckling, it would

be interesting to consider dynamics effects. A substantial literature
on dynamic buckling can be consulted in this respect. See, for
example, Refs. [7,8]. The sudden application of loading (corre-
sponding to a relatively large dynamic perturbation) would result
in trajectories undergoing nonlinear transient oscillations before set-
tling onto one of the available equilibrium configurations.
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Appendix

Finite Element Convergence Study

Table 4 Summary of experimental and simulation buckling
loads for the nominal 5 in. (126.21 mm) plate

Aspect
ratio

Simulation buckling load
(N)

Experimental buckling load
(N)

1 10.45 10.30± 0.49
1.5 6.37 6.38± 0.49
2 5.16 4.41± 0.49
2.5 4.96 2.21± 0.49
3 4.66 3.43± 0.49
3.5 4.46 1.47± 0.49
4 4.33 2.94± 0.49

Fig. 14 Experimental and computer simulation buckling loads
versus aspect ratio by width for the 5 in. (126.21 mm) plate

Fig. 15 Mesh convergence, AR=2 plate. The circled point at
640 mesh elements was selected.
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